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THE TOPOLOGY OF
STATIONARY CURL PARALLEL SOLUTIONS
OF EULER’S EQUATIONS'

BY
CARMEN CHICONE

ABSTRACT

We study the orbit structure of a vector field V defined on a three-dimensional
Riemannian manifold which satisfies V A curl V = 0. Such a vector field repre-
sents the velocity of a stationary solution of Euler’s equation for a perfect fluid.
In addition to several other results, we show that if the vector field admits a first
integral, then each level set is toroidal and the induced flow on the level set is
either periodic or conditionally periodic.

1. Introduction

The equations of motion of an ideal fluid in a three-dimensional bounded and
connected region D are given by Euler’s equations which may be expressed in
Bernoulli’s form as

A%

- Vacurl V+grade,

divV =,

where V is the velocity and « is a function determined by the conditions that
div V =0 and that V is tangent to the boundary. Using the vorticity equation

dcurl V

T [V, curl V],

where [ , ] is the Lie bracket, Arnold [cf. 2, p. 331] has shown that if the flow is
stationary, i.e., 3V/3t =0, and if V Acurl V does not vanish everywhere then
the region D can be partitioned into invariant cells which are either tori or
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cylinders. These cells are obtained as level surfaces of a. Moreover, on each
torus the flow lines are all periodic or all dense and on each cylinder the flow
lines are all periodic. In a remark on this theorem Arnold [2, p. 332] mentions
that when V A curl V =0 everywhere the flow is very complicated. In particular,
for the stationary flow given by

V. =Asinz + Ccosy, V, =Bsinx + A cos z,
V.=Csiny +Bcosx

on the three-dimensional torus computer experiments indicate that some flow
lines densely fill a three-dimensional region.

Avez and Buzzanca [4] have shown that if V has constant length and if
curl V = aV for some constant a then a connected component of a level surface
of a first integral h of V is either a plane, a cylinder or a torus and on the tori all
orbits are closed or all orbits are everywhere dense. Their main example is the
geodesic flow on the unit tangent bundle T:M of a Riemannian surface (M?, g)
for which they prove that the geodesic vector field X satisfies

curl X=-X

and
[x(=1

with respect to the natural “‘Sasaki” metric on T\M.

In this paper we study vector fields X defined on Riemannian three-manifolds
which satisfy curl X = aX for some function a. In particular, on a not necessarily
compact three-manifold we show that a vector field of constant length which has
an integral h satisfies the theorem of Avez and Buzzanca when curl X = aX and
a is a nonvanishing function. In addition, we show that X has constant length
and curl X = aX if and only if X is a contact vector field.

2. Contact structures and curl parallel fields

Let (M, g) denote a Riemannian manifold and let } denote the associated
Riemannian volume form. When M is three dimensional a vector field A on M
defines a 1-form wa (B) = g(A, B) and a 2-form i, £} such that both identifica-
tions are isomorphisms. With these identifications vector analysis on M is
obtained from the calculus of differential forms. In particular, if f is a function
and A is a vector field on M

df = Wgna,  d0a =lma @ and L, Q= (divA)Q.
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With the vector cross product A A B given by
@a Awp =iap ()

all the familiar formulas of vector analysis can be derived by using the exterior
wedge algebra of forms and the properties of the exterior derivative d and
interior product i.

Recall that a 1-form A defines a contact structure on a manifold of dimension
2n+1if A A(dA)" is a volume form. A vector field X is a contact vector field if
A(X)=1 and ixdA = 0. It follows easily that X preserves the volume A A (dA)"
and that X is nonvanishing. Every contact structure has a unique associated
contact vector field and it is a classical fact that the geodesic flow on the unit
tangent bundle of a Riemannian manifold is a contact vector field with respect to
the contact structure given by the Liouville 1-form.

When M is the unit sphere bundie of an orientable Riemannian 2-manifold, M
is parallelizable. In particular, if X is the geodesic vector field, Y is the
perpendicular geodesic vector field and A is the fiber rotation field one has the
bracket relations (cf. [S])

[X,Y]=kA, [X,A]=-Y and [Y,A]=X

where k is the Gauss curvature of the base manifold. Define the Sasaki metric S
on M by declaring that (X, Y, A) is an orthonormal oriented frame field and let
1 be the associated volume form defined by (X, Y, A) = 1. Then, with respect
to S, a coordinate free computation yields the equation

dwx = - ix Q
which is equivalent to the statement that curl X = — X,
Since curl X = — X for the geodesic field X and since X is a contact vector

field it is natural to ask for the relationship between contact vector fields and curl
parallel fields, i.e. vector fields such that curl X = aX. To find this relationship
we will need the following theorem.

THEOREM 2.1. Let X be the contact vector field for the contact structure A on the
(2n + 1)-dimensional manifold M. Then, there exists a Riemannian metric g such
that g(-,X)= A and such that the Riemannian volume = A A (dA)".

ProoF. The proof will proceed in two steps.
(a) There exists a Riemannian metric h on M such that h(-, X)= A

(b) Let £, be the Riemannian volume of k and f be the positive function such
that



164 C. CHICONE Israel J. Math.

O =A=AA(dA)-

Then, there exists an h positive definite bundle homomorphism B : TM - TM
such that BX = X and det B = f°.
Given (a) and (b), define

g(U, V)= h(U, BV).
We have g(-,X)=A and the Riemannian volume () of g is given by

Q=(detB)"’Q,=A
as required.
To prove (a) note that X is nonvanishing and, therefore, by Darboux’s
theorem there is a locally finite cover {U,} of M such that in the coordinates
(xl, Tt x2n+1) of U,

X =4/ox,

and
A= dxl + X2dx,.+2 + -+ xn+1dx2n+l-

Define a Riemannian metric h, on U, by assigning a smooth positive definite
symmetric matrix of functions h; in the variables (x, - - -, X2.+1) to each point of
U. such that the first row and first column of h; is (1,0, - -, x5, - -, Xuy). E M is
three dimensional such an assignment would be

1 0 X2
h.',' ={0 1 .
X 1+x3

Let {¢.} be a partition of unity subordinate to the cover {U.,} and define
h =3 ¢.h..

Let p € M and compute

h(-,X,)=2 ¢« (p)ha(-,d/0xy)

=2 ¢ (P

= Ap
as required.
To prove (b) observe that TM = [X] @ E where [ X] denotes the line bundle
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generated by X and E is the h orthocomplement of [X] in TM. Let I, be the
identity bundle homomorphism on [X} and I, the identity bundle homomor-
phism on E. Finally, define

B=I,®f"I.
Clearly, B is positive definite and at each point
detB = f>. Q.E.D.

THEOREM 2.2. Let X be a vector field on M>. The following statements are
equivalent.

(@) There exists a Riemannian metric g on M such that g(X, X)=c and
curl X = aX where a is a nonvanishing function and c is a nonzero constant.

(b) There exists a contact form A such that X is the contact vector field for A.

(c) There exists a Riemannian metric g such that g(X, X)=1and curl X = X.

ProoF. (a) = (b). Let A = ¢ 'wx. Then,
dA = c'dox = ¢ ianx Q=acVix Q
where (1 is the associated Riemannian volume. We have
A(X)=1
and
ixd\ = aclixix 2 =0,
hence, we need only show that A A dA is a volume. But,
ANdA = acwx A ixQ
and
0=ix(ox W) =cQ—wx Aix
imply
AArdAr=ac”'

(b) = (c). If A is a contact form and X is the associated contact vector field,
then by Theorem 2.1 there is a Riemannian metric g such that g(+, X)= A and
such that the associated Riemannian volume is A a dA. Then,

g(X. X)=1

and



166 C. CHICONE Israel J. Math.

ix(A A dA)'—"dA = de =icurlxﬂ
= icuﬂx(A A dA).

Hence, as required X = curl X.
The implication (c) => (a) is clear. Q.E.D.
Theorem 2.2 leads to a generalization of the result of Avez and Buzzanca.

THEOREM 2.3. Let X be a vector field on a three-dimensional oriented
Riemannian manifold (M, g) such that g(X, X)=cand curl X = aX wherecisa
constant and a is a nonvanishing function. If h is a first integral of X then a
component of a regular level set N of h is an X invariant plane, cylinder or torus.
Moreover, if N is a cylinder all orbits are closed and if N is a torus either all orbits
are dense or all orbits are closed.

Proor. The fact that h is a first integral of X does not depend on the choice
of Riemannian metric. Hence, applying Theorem 2.2 there is a Riemannian
metric g’ such that g’(X, X)=1 and such that curl X = X with respect to g'.
This reduces the result to the theorem of Avez and Buzzanca. In effect, since X
and X A grad h are tangent to the regular level set of h the theorem follows from
the easily proved fact that

[X,X angradh]=0. Q.E.D.

ReMARk. Theorem 2.2 also shows that the theorem of Avez and Buzzanca is
equivalent to the reduction of the phase space of a contact vector field to a level
set of an integral of the motion. Of course, this is the situation frequently
encountered in the Hamiltonian formulation of particle mechanics.
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